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Calculation of the wetted area of a planing hull with a chine 

E. M. C A S L I N G *  and G. W. K I N G * *  

(Received September 25, 1979 and in revised form November 25, 1979) 

SUMMARY 

The extent to which a low-aspect-ratio flat ship with a chined hull is wetted when planing at infinite Froude 
number is investigated. A numerical method of solution for the wetted area, which is applicable to more 
general planing problems, is presented. The results obtained by this method are compared with those found 
by solving the inverse problem of determining the hull shape which produces a given waterplane shape and 
are shown to be in excellent agreement. Results are also presented which indicate that a 'vertical' chine may 
be used to fix the shape of the wetted region. 

1. Introduction 

The motion of a boat at high speed on a free surface (planing) has been studied extensively, 
both experimentally and theoretically, by a large number of  authors. A bibliography and brief 

review of  some of  the more important (in the authors' view) papers is given by Casling [1]. 

However, very few authors have been concerned with problems of indeterminacy of  the shape 

of  either the planing hull or the free surface, three exceptions being Tuck [3], Oertel [4] and 

Casling [ 1, 5]. 

The work presented here is an application to chined hulls of results obtained by one of the 

authors in a previous paper (Casling [5]). It is an extension of the low-aspect-ratio flat-ship 

theory of  Tuck [3] for infinite Froude number and shows how the extent to which a hull is 

wetted is fixed completely be the physical characteristics of  the hull. 

The relationship is expressed as an integral equation, which must then be solved for the 

function describing the shape of  the wetted area. Difficulties arise because the range of  integra- 

tion depends on the inverse of the function defining the waterplane shape and therefore must 

also be deternained as part of  the solution to the problem. A numerical method for inverting the 

integral equation is described and particular examples which indicate its accuracy are discussed. 

The method is applicable to any planing hull, not necessarily one with a chine, and can be 

readily generalised to solve other integral equations in which the range of  integration is un- 

known, but not necessarily dependent on the inverse of the function being determined. 

Results which indicate how a vertical chine may be used to predetermine the waterplane 
shape are also presented. 
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Figure 1. The coordinate system. 

2. Mathematical formulation and solution of the general problem 

The general problem of the motion of a ship, which is slender as well as flat, will be described 
briefly first. For a more detailed discussion of the following derivation, the reader is referred to 

Tuck [3] or Casling [5]. 

We assume that a low-aspect-ratio flat ship is moving with speed U in an (x, y, s) coordinate 
system, whose origin is fixed to the bow, with x to starboard, y normal to the mean plane of 

the hull and s in the streamwise direction (see Figure 1). Assuming the flow is irrotational, the 
velocity field is given by 

q = V,~= V(Us + ~), 

where ~b is the perturbation velocity potential. 
The hull surface is defined by 

y = n ( x , s )  

for Ix I < b(s) and s < L, where b(s) is the half waterplane width and L is the length of the 
ship. Outside the hull surface, y = r/(x, s) describes the free-surface elevation caused by the 

motion of the ship. We will assume that the hull shape ~(x, s) is a strictly monotone-decreasing 
function of s and that the function describing the shape of the waterplane, x = b(s), is strictly 
monotone-increasing. The second assumption ensures that the flow does not separate from the 
leading edges of the hull upstream of the transom stern. Since the flow is symmetric, only x/> 0 

will be considered. 
The mathematical problem to be solved is to find the perturbation velocity potential, t~, 

given that 

¢xx + Cyy = 0 (2.1) 

in the region y < 0 subject to the conditions 

~y = U~s on y = 0 (2.2) 
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Figure 2. Cross-flow plane. 
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and 

Pip + Udp s = 0 on y = 0, (2.3) 

with the appropriate radiation condition at infinity (see Figure 2). P is defined as the excess of 
pressure over atmospheric at the free surface. Equations (2.2) and (2.3) are the linearised 
boundary conditions obtained from the exact hull boundary condition and kinematic free- 
surface condition, and the dynamic free-surface condition respectively when the small-draft and 
low-aspect-ratio approximations are made. These linearised boundary conditions are applied on 
y = 0 because, when the small-draft approximation is made, the hull reduces to its projection 
onto the plane y = 0. ¢ satisfies the two-dimensional Laplace equation (2.1)because, since the 
ship is slender, ~ is the potential for the problem in the crossflow plane. 

The solution to this problem in terms of the stream function ~(x,s)  was given by Casling [5] 
in the form 

t~(x,s) = (x 2 - b2(s))~Hb(s)t~(x,s) (b2(s)  - x2 )  -~, x > b(s), (2.4) 

where 

H , f (x  s "~ def. 1 f a ( s )  x d  ~ a(s)J% , ) = ~ J -a ( s )  "-- ~ f(~,S) 

is the Hilbert transform (see Tricomi [6], p. 173) of a function f on the interval (-a(s), a(s)). 

When -a(s )<  x < a(s), the integral is treated as a Cauchy principal-value integral. 
Expressions for the free-surface elevation may be derived from equation (2.4) (see Cas- 

ling [5]), because equation (2.2) and the Cauchy-Riemann equation 

give 

n~(x,s) = -  ¢x(x , s ) /U.  
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Thus, when x > b(s), 

n(,:,s) = - f o  d°(x~ - b~ (o))-~H~ (o)na(x,o) (b ~ (a) - x ~)~ (2.5) 

and, when I x t < b(s), 

~7(x,s) = do %(x,o) + c(x), (2.6) 

where 

c(x)-- - f o  °(x) a o ( x  ~ - b ' ( o ) ) - ~  . 1 ( ~ ( o )  d~ 
;r a - b ( o )  x -  

(no(~,o) - To(X, o)) (b: (o)-~ 2 )~ 

- x  (So (x) do( x= _ b2(o))_}rio(x,°) (2.7) 
~ U  

and s = So(X) is the station at which x = b(s). 
Equation (2.7) expresses the relationship between the waterplane shape b(s), hull slope 

~s(x,s) and the underwater hull shape described by c(x) and was discussed in some depth by 

Casling [5]. It means that, given any two of the above three functions, the third one cannot be 

fixed a priori but must be determined from this relationship. 

3. A planing hull with a chine 

A chine is a discontinuity in ~lx(X, s) at some offset x = B(s), where B(s) < b(s). For two 

examples of  such a section shape, see Figures 3 and 4. The chine may occur along either a fixed 
offset, say x = B, or an offset which is a sufficiently smooth function o f  the station s. In the latter 

case, we will assume that x = B(s) is a strictly monotone-increasing function of  s. 

The discontinuity may arise in a number of  ways. Firstly, there may be a jump in the lateral 

slope of  the section shape, while r/(x, s) remains continuous (see Figure 3). That is, 

nx(~(s)÷,s) ~ nx(8(s)-,s), 

B(s) / 
, /  
i 

L X 8(s )  4,," =_ x 

Figure 3. Cross-section of a chine. Figure 4. Cross-section of a chine. 
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but 

n ( , ( s )  ÷ ,s) : n O ( s ) - , s ) ,  (3.1) 

for fixed station s. Secondly, there may be a positive jump of O(~) = O(draft/length) in rl(x, s) 
at x = B(s), but no change in the lateral slope (see Figure 4). That is, 

rl(B(s)+,s) = ~I(B(s)-,s) + h(s), 

where h(s) > 0 and h(s) = 0(a), and 

nx(8(s)÷,s) : nx(B(s)- ,s). (3.2) 

Of course, the combination of these two cases, in which there is a jump in both r /and 7/x at x = 

B(s), may also occur. We will derive results for this general case. That is, 

and 

nx(B(s)-,s) 

rl(B(s)+,s) = r/(B(s)-,s) + h(s). 

(:3.3) 

0 . 4 )  

It should be noted that any chine which produces a non-monotone waterplane shape, x = b(s), 

is not permissible, since separation of the flow will occur from such a shape forward of the 
trailing edge and the problem is considerably altered. Provided ~/x(x, s) is non-negative for x / >  0 
and 0 ~< s ~< L,  difficulties do not arise. Also, it is clear that the following results may be readily 

generalised to the case of  a finite number of  discontinuities in 71x(X, s). 
As yet, we have made no assumptions concerning the behaviour of  r/s (x, s) at x = B(s). 

Since, from equation (3.4), ~(x, s) has a step of h(s) at x = B(s), a continuous function g(x, s) 
may be chosen so that 

rl(x,s) : g(x,s) + u(x - B(s))h(s), 0 <~ x <~ b(s), 

where u(t) is the unit step function, or Heaviside function. Therefore, unless h(s) = 0, both 

r/s(x, s) and r/x(x, s) have a delta-function discontinuity at x = B(s). For x > B(s), ~ls(x, s) = 
gs(x, s) + h'(s) and so, in the limit as x -~ B(s) ÷, 

n s ( 8 0 ) + , s )  = gs(B(s)+,s) + h'O). 

Thus, in general, 71s(B(s)+,s) will differ from rls(B(s)-,s). 
We assume that the chine starts at some station s = Sc, where 0 ~< sc <~ L, and that B(se) = 

b(sc) (see Figures 5 and 6). When s <<, Sc, that is, before the chine, the hull has no discontinuities 
and the results given in Section 2 apply directly. Therefore, when 0 <~ x <<, s c, the free-surface 

elevation is given by equations (2.5) and (2.6). When s > Sc, the free-surface elevation is 
described by the same two equations, but it must be remembered that, for a chine at varying 
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leading edge x=b(s) 
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S 

Figure 5. Chine starting at station s = s c. 

U 

B 

leading edge x=b(s) 

~"  ~chine l ine x=B  

Figure 6. Chine at fixed offset x = B. 

offset, r/s now has a discontinuity at x = +_.B(s) for s > sc. So, even though there is no explicit 

chine dependence in the equations for the free-surface elevation, the chine does affect the flow. 

This effect may also be observed by considering the following. As was shown in Section 2, given 

17s and b(s), the function c(x) is fixed. If a chine is introduced, then either 77s or b(s) must 
change for equation (2.7) to be satisfied by the new c(x). So the effect of  the chine on the free 

surface is felt indirectly through x = b(s). 
The direct problem of determining the extent of  the wetted area for a given hull shape 

involves solving equation (2.7) for the function x = b(s). The task is more complicated for a 
chined hull due to the implicit presence of the starting station of  the chine, s c. This point, 
where the free surface crosses the chine line, is not known in advance, because the extent of  the 

wetted area is also unknown. However, since x = B(s) is known, s c may be determined, once 

b(s) is known, by finding where the curves x -- B(s) and x = b(s) intersect. If  a particular 

waterplane shape is required, that is, if x = b(s) is given, then equation (2.7) fixes the hull 
geometry for a given chine line, x "= B(s). 

Casling [5] has solved analytically the direct problem for the simple case in which r/s is 

independent of  x, that is, r/s --- - f (s ) ,  although an explicit form for the function x = b(s)was not 
always possible. In Section 4, a method for numerically solving equation (2.7) for the function 

defining the waterplane of an arbitrary hull shape (not necessarily chined) is discussed. 
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4. Numerical solution technique 

So that the waterplane shapes of different flat ships can be calculated, a numerical technique 
for solving equation (2.7) with rb(x, s) and c(x) given is needed. Equation (2.7) may be written 

a s  

s i { 1  ['~o~ d~ 
c(b(s)) = - ;o do(b2(s) - b2(o)) -r -~ a-b(o)  b(s) - 

( r l a ( ~ , o )  - rlo(b(s),o)) (b = (o) - ~=)~ + b(s)r~o(b(s),o) t 

= - f o  do k(b(s),o',b) (b = (s) - b  = (o))-} (4.1) 

where k(b(s) ,o~) is a function of the waterplane shape b(s) and is given by the expression in 
braces. For the problem of a low-aspect-ratio flat ship, b(s) is, by assumption, a strictly increas- 

ing function so that when equation (4.1) is evaluated at b(s) = x, the upper bound of the range 
of integration is s = b -~ (x). 

To find a numerical solution, N + 1 points si, such that 0 =s0 < s l  < . . . < S N ,  are 
distributed along the s-axis with s N being the position of the last station at which we wish to 

find the waterplane. At each station si, the corresponding position of the waterplane b i = b(si) 

needs to be calculated (b0 = 0). So that the integral in equation (4.1) can be evaluated, an 
interpolation process between the computed b i is needed to give us the function b. Equation 
(4.1) may be written as 

F(b(s)'¢b) = c(b(s)) - ; o  do k(b(s),o'~) (b= (s) - b2(o)) -} (4.2) 

where we are required to find bi, i = 1,2 . . . . .  N such that 

F(bi;b) = 0. (4.3) 

In order to start the process of solving equation (4.3), an initial approximation b ° for b I is 
needed. Then, using a numerical solution procedure for equations in one variable, an approxi- 
mation b* to the actual value b I is calculated. From this, by extrapolation, an initial guess b ° 
for b 2 can be made and used to calculate b~ by the same procedure as b*. Thus, a numerical 

solution b*, i = 1 ..... N to (4.3) can be found, provided the integral in equation (4.2) can be 
evaluated. 

The numerical integration for this integral needs to be done carefully, as the integrand has a 
square-root singularity at the upper end of the range of integrat!on. A method for numerically 
evaluating such an integral can be constructed by not calculating the integrand at the point at 
which the singularity occurs (see Davis & Rabinowitz [2]). The accuracy of the quadrature 
procedure can be improved by distributing quadrature points over the interval of integration in 
such a way that the nature of the singularity is accounted for. 
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As the singularity is of the square root type, the M + 1 quadrature points S/k for the integral 
from 0 to si were chosen as 

S/k=sisin ( ~-4 ( k -  ~)) fork= l . . . . .  M 

and 

sb = 0. (4.4) 

This is equivalent to using integration by substitution and then having a regular grid of qua- 
drature points in terms of the new variable. Trapezoidal integration was used on each of the M 
intervals [s~_ 1, s~], so that a composite trapezoidal rule was applied to the whole interval [0, 

S/M]. This method of integration was found to give satisfactory accuracy for M ~ 100. The 
integral in equation (4.2) at b i was therefore approximated by 

i 

fj' ,to f M r(o) 

M-I  . 
- ' -  ' ' " F ( 4 )  ( 4 + ,  -5  F(so)(S,,-S'o)+~, - 4 - , )  

+F(4,) - 4,-,) 1 

where 

(4.5) 

F( o) = g(b(si),o'h ) (b ~ (sD - b ~ ( o) ) q . 

For the numerical examples used here, the method of false position was used to solve equation 
(4.3), as this took less evaluations of F(bi'~ ) than comparable methods, such as Newtonian 
iteration. Hence the number of times the integral needed to be evaluated was decreased. In 

practice, it was the evaluation of the integrals which took the most time. In the computer 
program, linear interpolation and extrapolation were used. As a check on the accuracy of the 
solution, after all the bi's were calculated a cubic Hermite interpolation function was fitted to 
the bi's and used to recalculate equation (4.2). The resulting values of F(bi',b) give a good 
estimate of the errors in the numerical solution. 

5. Numerical results 

It is also possible to obtain results by solving the indirect problem analytically. In this case, we 
determine the hull shape which produces the required waterplane shape. If we then use the 
determined hull shape as input for the numerical procedure and calculate the expected wetted 
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area, we can see how well the method works by comparing the result with the initial required 

waterplane shape. 
For example, suppose the hull shape is given by 

n(x,O={-o,s+c,(x), x<B(s), 
(a - ~[)s +c2(x), B(s)<x<~b(s), 

where a and 3' are small constants, and the chine starts at the bow and occurs along a varying 
offset with 

B(s) = Os, 

for small constant 0. 
Then, equation (2.7) becomes 

c(x) = 7 (So (x) do(x 2 _ b2(o))_{F(x,o) + (or - y)x ~;o 
(x) 

,,.tO dO 

where 

c(x) = ~ c~ (x), 
c:(x), 

and 

F(x,o)= 1 
"If 

x <. B(s), 

B(s) < x <~ b(s), 

da(x 2 - b2(o)) -~ (5.1) 

fo_ o x d  ~ (b2(o)  _ ~2)~ 

_ 2x s in- ' (Oo/b(o))  + (x2 - b~(°))~ × 
ff ff 

tsin-, ( b2(o)-xOo [ b2(o)+ xOo 
b(o) (x - Oo) ) - sin-I , b(o) (x + Oo) ) t "  

If we now assume that the waterplane is triangular with 

b(s) = ~s, 

for a small constant/3 > 0, then equation (5.1)may be integrated analytically, the result being 

c(x) = x ~ ( ~  - ~)/2 + ~ sin-' (o//3) + ~(q3 2 - 0~)~ - /3) /o~ = cx, 

where c is a constant. Thus, cl(x) and c2(x) are given by the same equation. From equation 

(3.4), h(s) = 7s and so the section shape which gives the required waterplane shape is similar to 
the one drawn in Figure 4. 
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Figure 7. 
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A test case with ~ = 0.1, # = 0.25, 7 = 0.05, 0 = 0.125 and c = .375. 

This result was then used to test the numerical procedure. Values were chosen for ¢~, ~, 3' and 

O, thus fixing c(x). The inputs to the program were a, 3' for the longitudinal hull slope, 0 for 
the position of the chine and c for the cross-section shape. The program output was/~, which 
determines the position of the waterplane. Figure 7 gives a bird's eye view of the planing ship 

for particular values of a, 3', 0 and c, with the waterplane shape being the outer triangle of solid 
lines, the dashed lines showing the position of the chine and the dotted lines showing where the 
hull would have been wetted if the ship had been stationary (v = 0). The analytic and numerical 

results obtained for the position of the wetted area were so close together that on a graph they 
are coincident straight lines. 

Although the above hull shape allows a comparison between analytic and numerical results, 
the hull form considered is not closely related to practical ship hulls. A more realistic shape is 
obtained by taking a hull given by 

-0.15(s - 0.Ss 2) + 0.4x, 

rl(x,s) = -0.15(s - 0.5s 2) + 0.8x - 0.04, 

x < 8 ( s ) ,  

B(s) < x < b(s), 

and the chine at a fixed offset, such that 

B(s)  = 0.1.  

As the longitudinal hull slope r/s(x, s) should not be zero on the hull, as separation will occur 
forward of such a point (see Casling [5]), a length of 0.5 was chosen for the ship. 

The shape of the above hull and the numerical results for the waterplane shape are shown in 
Figure 8. For the given results, twenty points (equally spaced along the hull), were chosen and 
the solution iterated to an accuracy of three decimal places. The bi's calculated were used to 
recalculate equation (4.2) and the maximum absolute value of F(bi; b) was 6.8 x 10 -4, which 
occurred as the waterplane crossed the chine fine. 

In Figure 8, the waterplane b(s) is shown, with the dashed line being the chine and the 
dotted line the position of the waterplane if the ship was stationary. On the cross-section, the 
crosses indicate the position of the edge of the waterplane and the dots its position if the ship 
was stationary. The side view results show that there is a rapid increase in the amount by which 
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cross-section 
bcs~ 

plan 

Figure 8. Waterplane shape for the second hull. 

the free surface is displaced when the waterplane crosses the chine line, This could be expected 

as there is a rapid change in the hull slope in the x-direction at that position. 

The above results show that the numerical procedure described in Section 4 works satisfac- 

torily. On a CDC Cyber 173, a complete run giving three decimal place accuracy and estimating 

the error in the solution to equation (4.2) took 32 seconds. This means that the technique is 

sufficiently quick to be a practical tool. 

6. The effect of  a vertical chine 

So far, we have assumed that the hull is wetted above the level of the chine and that the 

free-surface elevation is continuous across x = b(s). However, it is more interesting, from a 

practical point of view, to be able to determine for a given hull shape whether or not the free 

surface actually rises above the level of the chine. One way of doing this is to consider a new 

hull which has no chine, but whose shape, both below and above the level of the chine on the 

original hull, is the same as the shape of the original hull below the level of its chine. That is, if 

the original hull is defined by 

l fo do~ll°(x'°)+c'(x)' 

rl(x,s) = fo do rl2a(x,o) + c2(x), 

x < 8(s), 

x > 8(s) ,  
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then the new hull to be considered is given by 

,7(x,s)= 

E. M. Casling and G. W. King 

From the results presented in Section 2, the function x = b(s), which describes the shape of the 
waterplane of this hull, is unique. Therefore, whether or not the original hull is wetted above 
the chine depends on the position of the chine relative to the shape of the wetted area of the 
new hull. The problem divides itself into two cases. 

Firstly if the quantity B(s), which determines the position of the chine on the original hull, 
is always greater in value than the quantity b(s), then, clearly, the free surface will not reach the 

chine. That is, if B(s) >>- b(s) for all s, the original hull would not have been wetted above the 

chine (see Figure 9) and the shape of the waterplane is described by the function x = b(s). In 
effect, the chine is irrelevant. 

Secondly, if the curve x = B(s) lies inside the wetted region of the new hull, that is, if B(s) < 
b(s) for all s, then the original hull would have been wetted above the chine (see Figure 10). In 
this case, the waterplane shape is determined using the results derived earlier in this paper. It is, 

of course, possible to have a combination of these two cases. 
There is a further possibility, which has not, as yet, been discussed - a vertical chine. By 

this, we mean that the hull has vertical sides along the curve x = B(s) and so rt~(s,B(s)) is 

Position 
of chine on 

~ original hull 

-B(s) - b ( s ) ~  

y 
I 

b(s) B(s) 

Figure 9. Hull not wetted above chine. 

Y 
Position 

\ of chine on 
\original hull 

/ 
/ 

/ 

X 

Figure 10. Hull wetted above chine. 
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infinite, and there is no function c2(x) .  Such a chine may be obtained by letting h(s), the jump 
of O(tx) in rl(x, s) at x = B(s)  (see equation (3.2)), tend to infinity. If h(s) ~ oo, then, from 

equation (3.4), ~(B(s f ,  s) must also become infinite. By considering the limit as x ~ B(s)  ÷ in the 

expression for rl(x, s), given in equation (2.6), we see that ~(B(s f ,  s) will tend to infinity only if 

b(s) ~ B(s)  ÷. Thus, as the size of the jump in the hull along the chine line increases, the amount 

of hull wetted past the chine decreases until, in the limiting case of a vertical chine, the 

function defining the waterplane is the same as the function describing the position of the 

chine. The result has been confirmed numerically. 

This suggests that the best way of obtaining a required waterplane shape is to put a vertical 

chine along the curve which describes that shape, in the same way that a transom stern may be 

used to fix the wetted length of the hull. This may mean, however, that the linearised free- 

surface elevation is no longer finite along the leading edges of the hull. 

If the vertical chine occurs along a fixed offset, x = B, starting at station s = s c, then b(s) = B 

when s e < s ~< L and so b(s) has been fixed for these stations. When 0 <<. s <~ s c, b(s) is to be 
determined as before. From equation (2.5), the free-surface elevation outside the hull is given 

by 

~(X,S) = 

f ~  I 1 - d o ( x  2 - b 2 ( o ) )  ~ H b ( o ) % ( x , o ) ( b 2 ( o ) - x 2 )  ~, O<~s<.Sc, 

; ~ C  - 1 I 
do (x 2 - b 2 (o)) rHb(o)rla(x,o ) (b 2 (o) - x2 )  ~ 

_ _  , f ~  xd~ ' 1 (x 2 _B2)_~_ - -  (8 2 -~2)~-(n*(~,s)-rl*(~,sc)), s ~ < s < L ,  
71" - B  

where 

n*(x ,s )  = f ds ns(x,s) .  

Taking the limit as x ~ / T  of this equation for Sc < s <~ L,  

: so  
~(x,s)  (B 2 2 -L2 2 -~ - Jo  do  - b (o)) [--~o)no(X,O) (b2(o)  - x )~I~=B 

- ~  (x ~ - B ~ )  -~ d~(B+ ~)~/ (8-  ~)~(n (~,s)-n*(~,sc)). (6.1) 

That is, ,/(x, s) ~ oo, as x ~ B*, when s e < s ~ L and the free-surface elevation is no longer finite 

along the side of the hull. So, the shape of the waterplane past s = sc has been fixed, but only at 
the expense of continuity in r/(x, s) across x = b(s). 
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In particular, if rTs(x, s) is independent of both x and s, say Bs(x, s) : - a ,  then 

r~(x,s) : rl(x, sc) - a(s - sc) + ¢xx(s - Sc)/(x 2 - B2)~.  

This expression is identical to the equation obtained for the free-surface elevation outside the 

hull for s > L in Casting [5] with s c substituted for L. Thus, the same flow field is obtained if 

the portion of the hull for s > sc is removed. 

If  the vertical chine occurs along the curve x = B(s),  starting at station s = sc, then b(s) = 

B(s)  when s c < s <<. L.  So the waterplane shape has been fixed for this range of s, but still must 
be determined for 0 < s < s e. The free-surface elevation outside the hull is given by 

- f o  ao  (x ~ - b ~ ( o ) ) - ~ H b ( o ) n a ( x , o )  (b 2 (o)  - x ~)~, 

f o  c ao (x2 - b2 ( . ) ) - ' t /~  (o) no (x, o) (b 2 (o) - x2 )} 

n(x,s) = 
1 s 

-~ fSc d o (  x2 - S2 (o ) ) -~  

O < s < s c ,  

f B(o) ~ no(~,o) (~2(o)- ~2)~, 
B(o) x 

S c < s < ~ L .  

The question of interest is now 'Is the free-surface elevation still finite along x : b(s)?'. The 

above equation for ~(x, s) may be written 

rT(x,s) = - Jo do (x 2 - b2(o)) rHb(a )~o(x ,o  ) (b2 (o) - x2 ) ~, 0 < s <. L,  

where b(s) is to be determined for 0 <~ s <~ sc and is fixed for s c < s <~ L.  In the limit as x tends 
to b(s) from above, this integral is finite for all values ofs  and so rl(b(s)÷,s) is finite and equals 

n(b(s)-, s). 
A different result is obtained in this case, because the offset of the chine varies with the 

station, s. Thus, the square-root singularity (x 2 - B  2 (o))-~, which appeared outside the integral 
in equation (6.1) when B(s)  = B, now remains in the integrand and is integrable. When the chine 

occurs along a fixed offset, that is, B(s) = B, the singularity is independent of s and cannot be 

integrated out. 
Thus, by putting a vertical chine along a varying offset which starts at the bow, a particular 

waterplane shape may be chosen, provided that the hull is wetted up to the line of the chine, 
and the free-surface elevation will be finite along this curve. 
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